Christopher Magirl
October 10, 2013

Despite heavy sediment loads, large winter floods, and floodplain development, the rivers draining Mount Rainier, a 4,392-m glaciated stratovolcano within 85 km of sea level at Puget Sound, Washington, support important populations of anadromous salmonids, including Chinook salmon and steelhead trout, both listed as threatened under the Endangered Species Act. Aggressive river-management tools of the early 20th century, such as bank armoring and gravel dredging, are being replaced by more ecologically sensitive approaches. However, ongoing aggradation rates of up to 8 cm/yr in lowland reaches present acute challenges for resource managers tasked with ensuring flood protection without deleterious impacts to aquatic ecology. Using historical sediment-load data and a recent reservoir survey of sediment accumulation, rivers draining Mount Rainer were found to carry total sediment yields of 350 to 2,000 tonnes/km2/yr, notably larger than sediment yields of 50 to 200 tonnes/km2/yr typical for other Cascade Range rivers. An estimated 70 to 94% of the total sediment load in lowland reaches originates from the volcano. Looking toward the future, transport-capacity analyses and sediment-transport modeling suggest that large increases in bedload and associated aggradation will result from modest increases in rainfall and runoff that are predicted under future climate conditions. If large sediment loads and associated aggradation continue, creative solutions and long-term management strategies are required to protect people and structures in the floodplain downstream of Mount Rainier while preserving aquatic ecosystems.