This publication serves as an update for the most recent list of scientific and standard English names of North American amphibians and reptiles north of Mexico (Crother et al. 2000. SSAR scientific and standard English names of North American amphibians and reptiles. A primary source was McDiarmid reviewed the dates of publication for species of original species description. In the course of other work, one of us (McDiarmid) reviewed the dates of publication for species of amphibians and reptiles. A primary source was An Index to the Scientific and Standard English Names of Amphibians and Reptiles of North America North of Mexico: Update

BRIAN I. CROTHER1, JEFF BOUNDY2, JONATHAN A. CAMPBELL1, KEVIN DE QUEROZ1, DARRELL FROST1, DAVID M. GREEN6, RICHARD HIGHTON2, JOHN B. IVERSON8, ROY W. MCDIARMID9, PETER A. MEYLAN10, TOD W. REEDER6, MICHAEL E. SEIDEL2, JACK W. SITES, JR.11, STEPHEN G. TILLEY14, DAVID B. WAKE15

1Department of Biology, Southeastern Louisiana University Hammond, Louisiana 70402, USA; e-mail: bcrother@selu.edu
2Fur and Refuge Division, Louisiana Department of Wildlife and Fisheries P.O. Box 98,000, Baton Rouge, Louisiana 70898-9000, USA
3Department of Biology, UTA Box 19498, University of Texas Arlington, Texas 76019, USA
4Department of Systematic Biology, National Museum of Natural History Smithsonian Institution, Washington, DC 20560, USA
5Department of Vertebrate Zoology, American Museum of Natural History Central Park West at 79th Street, New York, New York 10024-5192, USA
6Redpath Museum, McGill University, 859 Sherbrooke Street, W, Montreal, Quebec H3A 2K6 Canada

7Department of Zoology, University of Maryland College Park, Maryland 20742, USA
8Department of Biology, Earlham College Richmond, Indiana 47374-4095, USA
9USGS Patuxent Wildlife Research Center, Smithsonian Institution P.O. Box 37012, National Museum of Natural History, Room 378, MRC 111 Washington, DC 20033-7012, USA
10Department of Natural Sciences, Eckerd College 4200 54th Avenue S, St. Petersburg, Florida 33711, USA
11Department of Biology, San Diego State University San Diego, California 92182, USA
12Department of Biological Sciences, Marshall University Huntington, West Virginia 25701, USA
13Department of Zoology, Brigham Young University Provo, Utah 84602, USA
14Department of Biology, Smith College Northampton, Massachusetts 01063, USA
15Museum of Vertebrate Zoology, 3101 VLSB, University of California Berkeley, California 94720-3140, USA

© 2003 by Society for the Study of Amphibians and Reptiles

Herpetological Review 34(3), 2003

An Index to the Scientific Contents of the Journal and Proceedings of The Academy of Natural Sciences of Philadelphia, published in 1913, pages vii–xiv, in Commemoration of the Centenary of the Academy, March 21, 1912. Data in the publication were drawn primarily from a file of ‘receipt acknowledgments’ received by the Academy from libraries to whom the Journal and Proceedings were sent. While useful in establishing a documented earliest date other than that printed on the volume, these acknowledgments likely were subject to the schedules of the various responding librarians and therefore not always helpful when the year of response was different from the stated date of publication. Another potential source of data are accessions files of the various libraries receiving the publications and initial contact with the library of the American Philosophical Society clarified the date of publication for volume 8 [1856] of the Proceedings. We hope that further research along these lines will provide definitive dates for most of these volumes and expect that additional updates will be needed in the future.

The task of compiling the kind of information that goes into these publications is not trivial. We encourage colleagues to please send reprints concerning any taxonomic changes or decisions relevant to this list. Receiving such reprints will help ensure these names lists are as complete as possible.

Anura — FROGS

Compiled by Darrel Frost

Ascaphus Stejneger, 1899—TAILED FROGS
Ritland et al. (2000, Can. J. Zool. 78: 1749–1758), using randomly amplified polymorphic DNA (RAPD), found large genetic distances between isolated coastal and Rocky Mountain populations of Ascaphus in British Columbia, as well as genetic differentiation between north and south coastal populations. Subsequently, Nelson et al. (2001, Evolution, 55: 147–160) reported on mtDNA variation among the isolated populations in the Pacific Northwest, concluding that former Ascaphus truei is composed of at least two species, and recognized these as Ascaphus truei and Ascaphus montanus.

A. montanus Mittleman and Myers, 1949—Rocky Mountain Tailed Frog
A. truei Stejneger, 1899—Coastal Tailed Frog

See Metter (1968, Cat. Am. Amph. Rept. 69) for review (as including Ascaphus montanus).

Bufo alvarius Girard, 1859—Sonoran Desert Toad
Bufo americanus Holbrook, 1836—American Toad
Bu. a. charlesimithi Bragg, 1954—Dwarf American Toad
Masta et al. (2002, Mol. Phylogenet. Evol. 24: 302–314) found that Bufo americanus charlesimithi was concordant with a distinctive mtDNA clade in their analysis, suggesting that it might be an independent lineage. Bu. boreas Baird and Girard, 1852—Western Toad

See Schuierer (1963, Herpetologica 18: 262–267). Two (sometimes three, see Bufo nelsoni) nominal subspecies are generally recognized, although the geographic variation within Bufo boreas is poorly studied and may mask a number of cryptic species.

B. b. boreas Baird and Girard, 1852—Boreal Toad
B. b. halophilus Baird and Girard, 1853—California Toad

Bu. fowleri Hinckley, 1882—Fowler’s Toad
Masta et al. (2002, Mol. Phylogenet. Evol. 24: 302–314), on the basis of molecular evidence suggested that Bufo fowleri is a distinct species composed of three molecularly distinctive populations, which require additional study as to their taxonomic status.

B. nebulifer Girard, 1843—Gulf Coast Toad
regarding the name of this frog, formerly called B. woodhousii. Several nominal subspecies named, though infrequently used in the literature. Whether these represent sibling species or arbitrarily delimited components of geographic variation is unknown. Further investigation is warranted. Highton (2000, Biol. Plendodontid Salamanders: 234) discussed the previously published allozyme evidence (including that of Case, Haneline, and Smith, 1975, Syst. Zool. 24: 281–295) and suggested that what genetic data as exist for Pseudacris regilla are not consistent with it being a single species.

P. streckeri A. A. Wright and A. H. Wright, 1933—Strecker’s Chorus Frog

P. s. illinoensis Smith, 1951—Illinois Chorus Frog

Rana berlandieri Baird, 1839—Rio Grande Leopard Frog

R. capito LeConte, 1855—Gopher Frog

Rana capito is considered by some to be part of R. areolata (but see Case, 1978, Syst. Zool. 27: 299–311, who considered it distinct). Recognized as distinct from Rana areolata by Young and Crother (2001, Copeia 2001: 382–388), who also suggested that the nominal subspecies are arbitrary units.

R. sevosa Goin and Netting, 1940—Dusky Gopher Frog

R. virgatipes Cope, 1891—Carpenter Frog

Data presented by Pytel (1986, Herpetologica 42: 273) suggest that careful evaluation for cryptic species is warranted.

Caudata — SALAMANDERS

Compiled by Richard Highton, Stephen G. Tilley (Chair), David B. Wake.

Ambystoma cingulatum Cope, 1868—Flatwoods Salamander

Batrachoseps galianensis Jockusch, Yanev, and Wake, 2001—Gabilan Mountains Slender Salamander

See annotation under B. pacificus.

B. incognitus Jockusch, Yanev, and Wake, 2001—San Simeon Slender Salamander

See annotation under B. pacificus.

B. luciae Jockusch, Yanev, and Wake, 2001—Santa Lucia Mountains Slender Salamander

See annotation under B. pacificus.

B. minor Jockusch, Yanev, and Wake, 2001—Lesser Slender Salamander

See annotation under B. pacificus.

B. pacificus (Cope, 1865)—Channel Islands Slender Salamander

This formerly polytypic species now includes only populations found on the northern Channel Islands off the coast of southern California (Jockusch et al., 2001, Herpetol. Monogr. 15: 54–99; Jockusch and Wake, 2002, Biol. Jour. Linn. Soc. 76: 361–391). Former members of this taxon have been raised to species rank (B. major, B. relicius) or described as new species (B. diabolicus, B. galianensis, B. incognitus, B. kawia, B. luciae, B. minor, and B. regius).

B. robustus Wake, Yanev and Hansen, 2002—Kern Plateau Salamander

B. wrightorum (Bishop, 1937)—Oregon Slender Salamander

Desmognathus conanti Rossman, 1958—Spotted Dusky Salamander

parapatric in Tennessee with only very limited hybridization, and that *D. conanti* consists of two clades of populations that may represent distinct species. **D. folkertsi** Camp, Tilley, Austin, and Marshall, 2002—Dwarf Black-bellied Salamander

Dicamptodon aterrimus (Cope, 1868)—Idaho Giant Salamander

Compiled by Kevin de Queiroz (Chair), Tod W. Reeder, Jack W. Sites, Jr.

A. pulchra Gray, 1852—California Legless Lizard

Pearse and Pogson (2000, Evolution 54: 1041–1046) presented evidence that the melanistic form previously designated *Anniella pulchra nigra* is polyphyletic, its Monterey Bay and Morro Bay populations having been derived independently from the silvery form previously designated *A. p. pulchra*. Although Pearse and Pogson did not propose any taxonomic changes, their results indicate that the subspecies *A. p. pulchra* and *A. p. nigra* do not correspond with separated or partially separated lineages, and therefore we do not recognize subspecies within *A. pulchra*. The existence and extent of genetic continuity between melanistic and silvery populations, as well as between northern and southern haplotype clones, deserves further study.

Anolis cristatellus Duméril and Bibron, 1837—Crested Anole (Introduced)

A. c. cristatellus Duméril and Bibron, 1837—Puerto Rican Crested Anole (Introduced)

Aspidoscelis Fitzinger, 1843—WHIPTAILS

Reeder et al. (2002, Am. Mus. Novit. 3365: 1–61) presented evidence that *Cheniophorus*, as previously circumscribed, is not monophyletic, and they resurrected *Aspidoscelis* for the clade composed of the species native to North America. Not shown below but necessary to note is that all author names are in parentheses. This change affects the following species names:

C. arizonae becomes *A. arizonae*
C. burti becomes *A. burti* (*C. b. stictogrammus* becomes *A. b. stictogramma*)
C. dixoni becomes *A. dixoni*
C. exsanguis becomes *A. exsanguis*
C. flagellicaudus becomes *A. flagellicaudus*
C. gularis becomes *A. gularis* (*C. g. gularis* becomes *A. g. gularis*)
C. gypsi becomes *A. gypsi*
C. hyperythrus becomes *A. hyperythrus* (*C. h. belingi* becomes *A. h. belingi*)
C. inornatus becomes *A. inornata* (*C. i. heptagrammus* becomes *A. i. heptagramma*, *C. i. juniperus* becomes *A. i. juniperus*, *C. i. llamuras* becomes *A. i. llamuras*)
C. laredoensis becomes *A. laredoensis*
C. marmoratus becomes *A. marmorata* (*C. m. marmoratus* becomes *A. m. marmorata*, *C. m. reticuloriens* becomes *A. m. reticuloriens*)
C. neomexicanus becomes *A. neomexicanus*
C. neotesselatus becomes *A. neotesselata*
C. uniparens becomes A. pai
C. septemvittatus becomes A. septemvittata (C. s. septemvittatus becomes A. s. septemvittata)
C. sexlineatus becomes A. sexlineata (C. s. sexlineatus becomes A. s. sexlineata, C. s. stephensae becomes A. s. stephensae)
C. sonorae becomes A. sonorae
C. tesselatus becomes A. tesselata
C. tigris becomes A. tigris (C. t. mundus becomes A. t. munda, C. t. punctelinealis becomes A. t. punctelinealis, C. t. septentrionalis becomes A. t. septentrionalis, A. t. stenegeri becomes A. t. stenegeri, C. t. tigris becomes A. t. tigris)
C. uniparens becomes A. uniparens
C. velox becomes A. velox
C. xanthontus becomes A. xanthonta

1 Reeder et al. (op. cit.) mistakenly used the name A. t. undulata instead of the valid name A. t. munda (see Crother et al., 2000, SSAR Herpetol. Circ. 29).

A. laredoensis (McKinney, Kay and Anderson, 1973)—Laredo Striped Whiptail (unisexual)

Abuhteba et al. (2001, Copoeia 2001: 262–266) interpreted hystoincompatibility between the members of two pattern classes within Aspidoscelis laredoensis as evidence for separate hybrid origins of the corresponding clones. The authors noted that two of them are planning to restrict the name A. laredoensis to one of the clones and propose a new species name for the other.

A. marmorata Baird and Girard, 1852—Marbled Whiptail
Aspidoscelis marmorata (including A. marmorata marmorata and A. m. reticuloriiens in the United States) was treated as a species by Hendricks and Dixon (1986, Texas J. Sci. 38: 327–402) but as a subspecies of A. tigris by Maslin and Secoy (1986, Contrib. Zool. Univ. Colorado Mus. 1: 1–60) and Wright (1993, Pp. 27–81 in Biology of Whiptail Lizards [Genus Cnemidophorus], J. W. Wright and L. J. Vitt [eds.], Oklahoma Mus. Nat. Hist.], Dessauer and Cole (1991, Copoeia 1991: 622–637; see also Dessauer et al., 2000, Bull. Am. Mus. Nat. Hist. 246: 1–148) presented evidence of both differentiation and interbreeding between marmorata and tigris along a transect near the southern part of the border between Arizona and New Mexico, including a narrow (3 km) hybrid zone in which hybrid indices based on color patterns and allele frequencies changed abruptly in concordant step clines. Although those authors interpreted their data as reflecting incomplete speciation between the two forms (i.e., a single species), the same data can be interpreted alternatively as reflecting largely separate gene pools (i.e., two species). Following the terminology of de Queiroz (1998, pp. 57–75 in Endless Forms: Species and Speciation, D. J. Howard and S. H. Berlocher [eds.], Oxford University Press), they are here considered incompletely separated species.

“Cnemidophorus” Wagler, 1830—SOUTH AMERICAN WHIPTAILS
Taxonomy for “Cnemidophorus” follows Peters and Donoso-Barros (1970, Bull. United States Natl. Mus. 297[Part II]: 1–293), Reeder et al. (2002, Am. Mus. Novit. 3365: 1–61) presented evidence that Cnemidophorus, even after the removal of Aspidoscelis, is not monophyletic, though they did not propose a taxonomic change to rectify this situation. We have placed the name “Cnemidophorus” in quotation marks to indicate the non-monophyletic status of the taxon.

Cosymbotus platyurus (Schneider, 1792)—Flat-tailed House Gecko (Introduced)

Crotaphytus vestigium Smith and Tanner, 1972—Baja California Collared Lizard
McGuire (1996, Bull. Carnegie Mus. Nat. Hist. 32: 1–143) noted that the name Crotaphytus vestigium Smith and Tanner is a junior synonym of C. fasciatus Moguard. Nevertheless, he used the junior synonym as the valid name for the taxon because the senior synonym had not been so used during the last 50 years, while the junior synonym had been used repeatedly. McGuire also noted that C. fasciatus Moguard is a junior (primary) homonym of C. fasciatus Hallowell (which is itself a junior synonym of Gambelia wislizenii) and that Moguard, apparently aware of the problem, had provided the new replacement name (nomen novum) C. fasciolatus. Because the junior primary homonym C. fasciatus Mogguard is invalid (ICZN, 1999: Article 57.2), the correct name for this taxon is C. fasciolatus; however, for the reasons noted above, McGuire (2000, Bull. Zool. Nomencl. 57: 158–161) has proposed that C. fasciolatus be suppressed. Until the International Commission on Zoological Nomenclature rules on this proposal, we have followed the Zoological Code (ICZN, 1999: Article 82.1) by maintaining the name in most common current use.

Eumeces “gilberti” Van Denburgh, 1896—Gilbert’s Skink
Richmond and Reeder (2002, Evolution 56: 1498–1513) presented evidence that populations previously referred to Eumeces gilberti represent three lineages that separately evolved large body size and the loss of stripes in late ontogenetic stages. Although they considered those three lineages to merit species recognition, they did not propose specific taxonomic changes in that paper. We have placed the name “gilberti” in quotation marks to indicate that it refers to a group composed of several species.

E. multivirgatus (Hallowell, 1857)—Many-lined Skink
E. m. epipleurotus Cope, 1880—Variable Skink

Hammerson (1999, Amphibians and Reptiles in Colorado, Univ. Press of Colorado) argued, based on diagnosability and the apparent absence of intergrades, that Eumeces multivirgatus epipleurotus (under the name E. gaigeae) is a different species than E. m. multivirgatus. We have refrained from adopting this proposal until a more rigorous study is conducted.

E. skiltonianus (Baird and Girard, 1852)—Western Skink
Richmond and Reeder (2002, Evolution 56: 1498–1513) presented evidence that the subspecies of Eumeces skiltonianus, as currently circumscribed, do not correspond with the boundaries of haplotype clades based on mitochondrial DNA. However, because those authors did not propose a revised subspecies taxonomy, and because resolution of that taxonomy requires more extensive geographic sampling, we have retained the existing subspecies taxonomy (e.g., Tanner, 1988, Cat. Am. Amph. Rept. 447.1).

Hemidactylus turcicus (Linnaeus, 1758)—Mediterranean House Gecko (Introduced)

Holbrookia Girard, 1851—LESSER EARLESS LIZARDS

Leiocephalus carinatus Gray, 1827—Northern Curly-tailed Lizard (Introduced)

L. c. armouri Barbour and Shreve, 1935—Little Bahama Curly-tailed Lizard (Introduced)

Mabuya Fitzinger, 1826—MABUYAS

M. multifasciata (Kuhl, 1820)— Many-striped Mabuya (Introduced)

Neoseps Stejneger, 1910—FLORIDA SAND SKINKS

Ophisaurus Daudin, 1803—GLASS LIZARDS

Phrynosoma douglasii (Bell, 1829)—Pygmy Short-horned Lizard

Podarcis maurus (Laurenti, 1768)—Common Wall Lizard (Introduced)

P. sicula (Rafinesque, 1818)—Italian Wall Lizard (Introduced)

Podarcis sicula is established in Long Island, New York (Smith and Kohler, 1978, Trans. Kansas Acad. Sci. 80: 1–24 and reference therein) and Topeka, Kansas (Collins, 1993, Univ. Kansas Mus. Nat. Hist. Public Educ. Ser. No. 13). According to Smith and Kohler (op. cit.), the New York population is *P. s. sicula;* however, a more recent study by Oliverio et al. (2001, Ital. J. Zool. 68: 121–124) referred both the New York (see also Burke et al., 2002, Copeia 2002: 836–842) and Kansas populations to *P. s. campestris,* though a more thorough characterization of geographic variation within *P. sicula* is needed. A population of *P. s. campestris* was formerly established in Philadelphia, Pennsylvania, but that population is now thought to be extinct (Smith and Kohler, op. cit. and references therein).

Sauromalus ater Duméril, 1856—Common Chuckwalla

Sceloporus jarrovii Cope, 1875—Yarrow’s Spiny Lizard

Wiens et al. (1999, Evolution 53: 1884–1897; see also Wiens and Penkrot, 2002, Syst. Biol. 51: 69–91) presented evidence that several of the previously recognized subspecies of *Sceloporus jarrovii* are not monophyletic and that several clades within this species are more closely related to other species in the *S. torquatus* group than to other populations of *S. jarrovii.* Therefore, they recognized five species for the populations formerly referred to *S. jarrovii,* applying the name *S. jarrovii* to the only one of those five species that occurs in the United States (corresponding with the set of populations formerly referred to *S. j. jarrovii*). No subspecies were recognized.

S. undulatus (Bosc and Daudin in Sonnini and Latreille, 1801)—Eastern Fence Lizard

Leaché and Reeder (2002, Syst. Biol. 51: 44–68) presented phylogeographic evidence that *Sceloporus undulatus,* as previously circumscribed, is made up of at least four separately evolving lineages, and they applied the name *S. undulatus* to populations east of roughly the 88th meridian. Their results also suggest that the formerly recognized subspecies *undulatus* (Southern Fence Lizard) and *hyacinthinus* (Northern Fence Lizard) are not natural groups (see also Miles et al., 2002, Herpetologica 58: 277–292), and that the deepest genetic division within *S. undulatus* is not between northern and southern populations but between those east and west of the Appalachian Mountains, though they did not recognize subspecies within *S. undulatus.*

S. consobrinus Baird and Girard, 1853—Prairie Lizard

See note for *Sceloporus undulatus.* Leaché and Reeder (2002, Syst. Biol. 51: 44–68) applied the name *S. consobrinus* to the populations formerly referred to *S. undulatus* from the central United States, most (though not all) of which occur in the plains between the Mississippi River and the Rocky Mountains. Their results also suggest that the formerly recognized subspecies *consobrinus* (Southern Prairie Lizard) and *garmani* (Northern Prairie Lizard) are not natural groups (see also Miles et al., 2002, Herpetologica 58: 277–292), and that the deepest genetic division within *S. undulatus* is not between northern and southern populations but between those east and west of the Appalachian Mountains, though they did not recognize subspecies within *S. undulatus.*

S. tristichus Baird and Girard, 1852—Sonoran Earless Lizard

While the set of populations formerly referred to *S. tristichus* (Northern Plateau Lizard) are not natural groups, and they did not recognize subspecies within *S. undulatus* from roughly the region of the Colorado Plateau. Their results also suggest that the formerly recognized subspecies *tristichus* (Southern Plateau Lizard), *erythrocheilus* (Red-ridged Plateau Lizard), and *elongatus* (Northern Plateau Lizard) are not natural groups, and they did not recognize subspecies within *S. tristichus.*

Scincella lateralis (Say in James, 1823)—Little Brown Skink

Uma notata Baird, 1859 “1858”—Colorado Desert Fringe-toed Lizard
Trépanier and Murphy (2001, Mol. Phylogenet. Evol. 18: 327–334) presented evidence that *Uma notata*, as previously circumscribed, is paraphyletic; the subspecies *U. n. notata* is more closely related to *U. inornata* than to *U. rufopunctata* (see also Wilgenbusch and de Queiroz, 2000, Syst. Biol. 49: 592–612). They therefore considered the two previously undescribed subspecies to be species.

U. rufopunctata Cope, 1895—Yuman Desert Fringe-toed Lizard

Urosaurus nigricaudus (Cope, 1864)—Baja California Brush Lizard

Aguirre et al. (1999, Herpetologica 55: 369–381) and Grismer (1999, Herpetologica 55: 446–469) presented evidence that *Urosaurus microscutatus* and *U. nigricaudus* constitute a single species, for which the name *U. nigricaudus* has priority and within which no subspecies were recognized. The English name Black-tailed Brush Lizard was applied to *U. nigricaudus* when that species was thought to include only populations from southern Baja California; however, that name is descriptively misleading when applied to the species as currently circumscribed. Although the English name Baja California Brush Lizard has been used for *U. lahetai* (e.g., Stebbins, 1985, A Field Guide to Western Reptiles and Amphibians, Houghton Mifflin Co.; Grismer, 2002, Amphibians and Reptiles of Baja California, Univ. California Press), that species is restricted to a small area in the vicinity of Cataviña (suggesting the English name Cataviña Brush Lizard); in contrast, *U. nigricaudus* is widely distributed in, and more-or-less restricted to, Baja California.

Uta stansburiana Baird and Girard, 1852—Common Side-blotched Lizard

Upton and Murphy (1997, Mol. Phylogenet. Evol. 8: 104–113) presented evidence for a distant relationship between *Uta* specimens from Durango versus those from Baja California and surrounding islands (as well as one locality in western Sonora), and they considered the Durango population to constitute a different species, to which they applied the name *U. stejnegeri*. Upton and Murphy’s study did not include any populations from the United States, where *Uta* is widely distributed (including the type localities of both *stansburiana* and *stejnegeri*), and we have therefore refrained from adopting their taxonomic proposal until more information is obtained on the relationships of the United States populations.

Xantusia bezyi Papenfuss, Macey, and Schulte, 2001—Bezy’s Night Lizard

X. gracilis Grismer and Galvan, 1986—Sandstone Night Lizard

Lovich (2001, Herpetologica 57: 470–487), presented evidence that the population formerly designated *Xantusia henshawi gracilis* is evolving separately from other populations of *X. henshawi* and recognized it as a species.

X. henshawi Stejneger, 1893—Granite Night Lizard

Lovich (2001, Herpetologica 57: 470–487) presented evidence that the populations of *Xantusia henshawi* represent at least three separately evolving lineages, though he did not propose recognizing them as species.

X. vigilis Baird, 1859 “1858”—Desert Night Lizard

V. arizonea Klauber, 1931—Arizona Night Lizard

Papenfuss et al. (2001, Sci. Pap. Nat. Hist. Mus. Univ. Kansas 23: 1–9) proposed that *X. arizonea* represents a different species than other populations of *X. vigilis* based on DNA and allozyme differences. Their study was based on a limited sample of *X. vigilis*, and we have therefore refrained from adopting their proposal until more information becomes available on the relationships of other *X. vigilis* populations.

Squamata — SNAKES

Compiled by Jeff Boundy, Jonathan Campbell, Brian Crother (Chair)

Charina umbratica Klauber, 1943—Southern Rubber Boa

Rodríguez-Robles et al. (2001, Mol. Phylogenet. Evol. 18: 227–237), used mtDNA sequence and considered allozyme data from a previous study (Weisman, 1988, MS Thesis, CSU Polytechnic Pomona) and found *C. umbratica* to represent a morphologically distinct, allopatric entity that they elevated to species status.

Chilomeniscus stramineus Cope, 1860—Variable Sandsnake

Grismer et al. (2002, Herpetologica 58: 31–31) found *C. cinctus, C. punctatisimus*, and *C. stramineus* to represent morphotypes of a single species.

Chionactis Cope, 1860—SHOVEL-NOSED SNAKES

C. occipitalis (Hallowell, 1854)—Western Shovel-nosed Snake

C. o. annulata (Baird, 1859)—Colorado Desert Shovel-nosed Snake

Mahrdt et al. (2001, Cat. Am. Amph. Rept. 730) considered *C. saxatilis* a synonym of *C. o. annulata*.

C. palarostris (Klauber, 1937)—Sonoran Shovel-nosed Snake

Contia tenuis (Baird and Girard, 1852)—Sharp-tailed Snake

Crotalus oreganus Holbrook, 1840—Western Rattlesnake

Pook et al. (2000, Mol. Phylogenet. Evol. 15: 269–282), Ashton and de Queiroz (2001, Mol. Phylogenet. Evol. 21: 176–189), and Douglas et al. (2002, pp. 11–50 in Biology of the Vipers, G. W. Schuett, M. Höggren, M. E. Douglas, and H. W. Greene [eds.], Eagle Mountain Press) analyzed mtDNA sequence data and concluded that *Crotalus viridis* comprised at least two clades, *C. viridis* and *C. oreganus*, with *C. v. cerberus* being the sister taxon to populations of *C. oreganus*. The former two studies did not formally recognize *cerberus* as a species, although both suggested that it was an evolutionary species based on sequence differences and allopatry. The last study did recognize *cerberus* as well as four other taxa. We take the conservative action supported by the congruence among all three studies, which is the recognition of *viridis* and *oreganus*.

C. o. abyssus Klauber, 1930—Grand Canyon Rattlesnake

C. o. cerberus (Coues, 1875)—Arizona Black Rattlesnake

C. o. concolor Woodbury, 1929—Midget Faded Rattlesnake

C. o. helleri Meek, 1905—Southern Pacific Rattlesnake

C. o. lutosus Klauber, 1930—Great Basin Rattlesnake

C. o. oreganus Holbrook, 1840—Northern Pacific Rattlesnake

C. ruber Cope, 1892—Red Diamond Rattlesnake

C. scutulatus (Kennicott, 1861)—Mohave Rattlesnake

C. s. scutulatus (Kennicott, 1861)—Northern Mohave Rattlesnake

The spelling of the word “Mohave” has been changed to its proper form, “Mohave.” The misspelling was noted by Lowe in the preface to his “Venomous Reptiles of Arizona” (1986). The English name of the nominal subspecies was changed to reflect the distribution rather than describe rattlesnakes from a small portion of its distribution (D. Hardy and H. Greene, pers. comm.).

C. viridis (Rafinesque, 1818)—Prairie Rattlesnake

See comments under *C. oreganus*.

C. v. nuntius Klauber, 1935—Hopig Rattlesnake

C. v. viridis (Rafinesque, 1818)—Green Prairie Rattlesnake

Drymarchon melanurus (Duméril, Bibron and Duméril, 1854)—Central American Indigo Snake

Wüster et al. (2001, Herpetol. J. 11: 157–165) found two taxa of
Drymarchon coexisting in northern Venezuela, representing South American (D. corais) and Central/North American (D. melanurus) taxa. D. m. erubescens (Cope, 1860)—Texas Indigo Snake

Elaphe Fitzinger, 1833—RATSNAKES
Utiger et al. (2002, Russian J. Herpetol. 9: 105–124), using molecular data, divided Elaphe into eight genera. New World Elaphe are part of a clade outside of Old World species, and Pantherophis Fitzinger, 1843, is resurrected for most North American species. The common name would be North American Ratsnakes. Pending further review, we retain the current concept of Elaphe.

E. alleghaniensis (Holbrook, 1836)—Eastern Ratsnake
See under *E. obsoleta*.

E. emoryi (Baird and Girard, 1853)—Great Plains Ratsnake
Burbrink (2002, Mol. Phylogenet. Evol. 25: 465–476), using molecular data, found *E. guttata* to comprise three clades, which he elevated to species level. *Elaphe guttata meahillmorum* was inferred not to be an evolutionary entity, and was synonymized with *E. emoryi*.

E. guttata (Linnaeus, 1766)—Red Cornsnake

E. obsoleta (Say, 1823)—Texas Ratsnake
Burbrink divided *E. obsoleta* into three species, with no subspecies, based on the congruence of morphological (2001, Herpetol. Monogr. 15: 1–53) and mtDNA (Burbrink et al. 2000, Evolution 54: 2107–2118) evidence.

E. slowinnikii Burbrink, 2002—Sloviniski's Cornsnake
Burbrink (2002, Mol. Phylogenet. Evol. 25: 465–476), using molecular data, found *E. guttata* to comprise three clades, which he elevated to species level. The clade comprising populations in western Louisiana and eastern Texas were named *E. slowinnikii*.

E. spiloides (Duméril, Bibron and Duméril, 1854)—Gray Ratsnake
See under *E. obsoleta*.

Farancia erytrogramma (Palisot de Beauvois in Sonnini and Latreille, 1801)—Rainbow Snake

Gyalopion Cope, 1860—WESTERN HOOK-NOSED SNAKES

G. canum Cope, 1860—Chihuahuan Hook-nosed Snake

Heterodon glyoid Edgren, 1952—Dusty Hog-nosed Snake
Werler and Dixon (2000, Texas Snakes, University of Texas Press, Austin) regarded *H. n. glyoidi* to be an allopatric, diagnosable taxon restricted to the low plains-eastern forest ecotone of eastern Texas.

Lampropeltis triangulum (Lacépède, 1789)—Milksnake

L. zonata (Lockington, 1876 ex Blainville, 1835)—California Mountain Kingsnake
Rodríguez-Robles et al. (1999, Mol. Ecol. 8: 1923–1934) examined mtDNA and color pattern. The DNA suggested distinct northern and southern clades that they left unnamed. The color pattern variation was in some cases, follow phenotypic subspecies boundaries. Hammerson (1999, Amphibians and Reptiles of Colorado. 2nd ed. University of Colorado Press, Boulder) found phenotypes assignable to *T. e. arizonae* and *T. e. vascotanneri* outside of their purported distributions within Colorado, and recommended that the two names be synonymized with *T. e. vagrans*. Hammerson’s data supported similar action for Arizona and New Mexico populations as well (J. Boundy, pers. obs.). Three subspecies are tentatively retained.

Leptotyphlops dissectionis (Cope, 1896)—New Mexico Threadsnake
See *L. dulcis*.

L. dulcis (Baird and Girard, 1853)—Texas Threadsnake
Dixon and Vaughan (2003, Texas J. Sci. 55: 3–24), using morphological data, elevated *L. d. dissectionis* to species status, and diagnosed three subspecies within the nominate race, one of which remains unnamed.

L. d. dulcis (Baird and Girard, 1853)—Plains Threadsnake

L. d. rhabdium (Garman, 1883)—South Texas Threadsnake

Masticophis fuliginosus (Cope, 1895)—Baja California Coachwhip

Opheodrys aestivus (Linnaeus, 1766)—Rough Greensnake

Pituophis Holbrook, 1842—BULLSNAKES, GOPHERSNAKES, and PINESNAKES
Rodríguez-Robles et al. (2000, Mol. Phylogenet. Evol. 14: 35–50) used mtDNA data and corroborated the current view of *Pituophis* with three species: melanoleucus, catenifer, and ruthveni. However, the recognition of *ruthveni* rendered *catenifer* paraphyletic. Pending data to corroborate the recognition of *ruthveni*, it is clear that *Pituophis* will undergo taxonomic revision in the near future.

P. catenifer (Blainville, 1835)—Gophersnake
Rodríguez-Robles et al. (2000, Mol. Phylogenet. Evol. 14: 35–50), used mtDNA data and discovered significant internal structuring among *P. catenifer* populations, which may signify the existence of additional species. Rodriguez-Robles et al. did not attempt reclassification. See annotation under *Pituophis*.

P. ruthveni Stull, 1929—Louisiana Pinesnake
Rodríguez-Robles et al. (2000, Mol. Phylogenet. Evol. 14: 35–50), used mtDNA data and argued for the recognition of *P. ruthveni*, despite lack of significant or independent differentiation from some populations of *P. c. sayi*.

Regina Baird and Girard, 1853—CRAYFISH SNAKES

R. septemvittata (Say, 1825)—Queen Snake

Sonora semiannulata Baird and Girard, 1853—Groundsnake
Werler and Dixon (2000, Texas Snakes, University of Texas Press, Austin) recognized the subspecies *S. s. taylori* as a diagnosable taxon occupying the Tamaulipan biotic province.

S. s. semiannulata Baird and Girard, 1853—Variable Groundsnake
S. s. taylori (Boulenger, 1894)—Southern Texas Groundsnake

Storeria occipitomaculata (Storer, 1839)—Red-bellied Snake

Tantilla cucullata Minton, 1956—Trans-Pecos Black-headed Snake

T. elegans (Baird and Girard, 1853)—Terrestrial Gartersnake
Bronikowski and Arnold (2001, Copeia 2001: 508–513) used cytochrome b sequence data to identify several clades within *T. elegans* that did not, in some cases, follow phenotypic subspecies boundaries. Hammerson (1999, Amphibians and Reptiles of Colorado. 2nd ed. University of Colorado Press, Boulder) found phenotypes assignable to *T. e. arizonae* and *T. e. vascotanneri* outside of their purported distributions within Colorado, and recommended that the two names be synonymized with *T. e. vagrans*. Hammerson’s data supported similar action for Arizona and New Mexico populations as well (J. Boundy, pers. obs.). Three subspecies are tentatively retained.

T. e. elegans (Baird and Girard, 1853)—Mountain Gartersnake
T. e. terrestris Fox, 1951—Coast Gartersnake
T. e. vagrans (Baird and Girard, 1853)—Wandering Gartersnake

T. sirtalis infernalis (Blainville, 1835)—Red-spotted Gartersnake

CROCODILIA—CROCODILIANS

Crocodylus acutus Cuvier, 1807—American Crocodile

TESTUDINES—TURTLES

Compiled by John Iverson, Peter Meylan (Chair), Michael Seidel

Actinemys Agassiz, 1857—PACIFIC POND TURTLES

Emys and *Emydoidea* are retained despite the recommendation of Feldman and Parham (2002) to lump *Emydoidea* and *Actinemys* under *Emys* because those authors had not seen the argument by Holman and Fritz (2001) for recognizing *Actinemys* as a monotypic genus. We are in agreement with Holman and Fritz that retention of separate genera for *Emys* and *Emydoidea*, and using a third generic name for *Actinemys marmorata*, best serves to reflect the diversity in this monophyletic group. See Clemmys.

A. marmorata (Baird and Girard, 1852)—Pacific Pond Turtle

A. m. marmorata (Baird and Girard, 1852)—Northern Pacific Pond Turtle

A. m. pallida (Seeliger, 1945)—Southern Pacific Pond Turtle

Clemmys Ritgen, 1828—SPOTTED TURTLES

Until recently (Holman and Fritz, 2001, Zoolog. Abhand. Staat. Mus. für Tierkunde Dresden 51: 331–354; and Feldman and Parham, 2002, Mol. Phylogen. Evol. 22: 388–398) the content of the genus *Clemmys* was based on the work of McDowell (1964, Proc. Zool. Soc. Lond. 143: 239–279). This genus was considered to include a set of four North American species (*C. guttata*, *C. insculpta*, *C. marmorata*, and *C. muhlenbergii*) and was given the Standard English name, AMERICAN POND TURTLES. Work by Bickham et al (1996, Herpetologica 52: 89–97), Burke et al. (1996, Herpetologica 52: 572–584), Lenk et al. (1999, Mol. Ecol. 8: 1911–1922), Holman and Fritz (op. cit.), Feldman and Parham (op. cit.) and Seidel (2002a, Copeia 2002: 1118–1121) provide ample evidence that *Clemmys* (sensu lato) is paraphyletic with respect to the genera *Emys*, *Emydoidea* and *Terrapene*. *C. marmorata* has been shown to be the sister group of *Emys* and *Emydoidea* with the remaining species being paraphyletic with respect to this group and *Terrapene*. *C. insculpta* and *C. muhlenbergii* appear to be sister taxa and *C. guttata* appears to be the sister group to all remaining members of the Emydinae. Thus, the taxonomic revision suggested by Holman and Fritz (op. cit.) is advisable and is followed here. In this revision only the type species, *C. guttata*, is retained in the genus *Clemmys*. See notes for *Actinemys* and *Glyptemys*.

C. guttata (Schneider, 1792)—Spotted Turtle

Glyptemys Agassiz, 1857—SCULPTED TURTLES

See note for *Clemmys*.

G. insculpta (LeConte, 1830)—Wood Turtle

G. muhlenbergii (Schoepff, 1801)—Bog Turtle

Kinosternon hirtipes Wagler, 1830—Rough-footed Mud Turtle

Sternotherus carinatus (Gray, 1855 1856)—Razor-backed Musk Turtle

Trachemys Agassiz, 1857—SLIDERS

T. gaigeae (Hartweg, 1939)—Mexican Plateau Slider

T. g. gaigeae (Hartweg, 1939)—Big Bend Slider